



| 1  | Homogenized century-long surface incident solar radiation                                                                                                      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | over Japan                                                                                                                                                     |
| 3  | Qian Ma <sup>1</sup> , Kaicun Wang <sup>*1</sup> , Yanyi He <sup>1</sup> , Liangyuan Su <sup>1</sup> , Qizhong Wu <sup>1</sup> , Han Liu <sup>1</sup> , Youren |
| 4  | Zhang <sup>1</sup>                                                                                                                                             |
| 5  |                                                                                                                                                                |
| 6  | <sup>1</sup> State Key Laboratory of Earth Surface Processes and Resource Ecology, College of                                                                  |
| 7  | Global Change and Earth System Science, Beijing Normal University, Beijing 100875,                                                                             |
| 8  | China                                                                                                                                                          |
| 9  |                                                                                                                                                                |
| 10 |                                                                                                                                                                |
| 11 |                                                                                                                                                                |
| 12 | Corresponding Author: Dr. Kaicun Wang, State Key Laboratory of Earth Surface                                                                                   |
| 13 | Processes and Resource Ecology, College of Global Change and Earth System Science,                                                                             |
| 14 | Beijing Normal University, Beijing, 100875, China. Email: <u>kewang@bnu.edu.cn</u> ; Tel.:                                                                     |
| 15 | +86 (10)-58803143.                                                                                                                                             |
| 16 |                                                                                                                                                                |
| 17 |                                                                                                                                                                |
| 18 |                                                                                                                                                                |
| 19 |                                                                                                                                                                |



20

## Abstract

| 21 | Surface incident solar radiation $(R_s)$ plays an essential role in climate change on            |
|----|--------------------------------------------------------------------------------------------------|
| 22 | Earth. $R_s$ can be directly measured, and it shows substantial variability, i.e., global        |
| 23 | dimming and brightening, on decadal scales. $R_s$ can also be derived from the observed          |
| 24 | sunshine duration (SunDu) with reliable accuracy. The SunDu-derived $R_s$ was used as            |
| 25 | a reference to detect and adjust the inhomogeneity in the observed $R_s$ . However, both         |
| 26 | the observed $R_s$ and SunDu-derived $R_s$ may have inhomogeneity. In Japan, SunDu has           |
| 27 | been measured since 1890, and $R_s$ has been measured since 1961 at ~100 stations. In            |
| 28 | this study, the observed $R_s$ and SunDu-derived $R_s$ were first checked for inhomogeneity      |
| 29 | with a statistical software RHtest. If confirmed by the metadata of these observations,          |
| 30 | the detected inhomogeneity was adjusted based on the RHtest-quantile matching                    |
| 31 | method. Second, the two homogenized time series were compared to detect further                  |
| 32 | possible inhomogeneity. If confirmed by the independent ground-based observations of             |
| 33 | cloud cover fraction, the detected inhomogeneity was adjusted based on the reference             |
| 34 | dataset. As a result, a sharp decrease in the observed $R_s$ from 1961 to 1975 caused by         |
| 35 | instrument displacement was detected and adjusted. Similarly, a gradual decline in               |
| 36 | SunDu-derived $R_s$ due to steady instrument replacement from 1985 to 1990 was                   |
| 37 | detected and adjusted. After homogenization, the two estimates agree well. $R_s$ was             |
| 38 | found to have increased at a rate of 0.9 W m <sup>-2</sup> per decade (p<0.01) from 1961 to 2015 |
| 39 | based on the homogenized SunDu-derived $R_s$ , which was enhanced by a positive                  |
| 40 | aerosol-related radiative effect (2.2 W m <sup>-2</sup> per decade) and diminished by a negative |





- 41 cloud cover radiative effect (-1.4 W  $m^{-2}$  per decade). The brightening over Japan was
- 42 the strongest in spring, likely due to a significant decline in aerosol transported from
- 43 Asian dust storms. The observed raw  $R_s$  data and their homogenized time series used in
- 44 this study are available at https://doi.org/10.11888/Meteoro.tpdc.271524 (Ma et al.,
- 45 2021).
- 46
- 47 Key Points:
- 48 (1) Surface incident solar radiation  $(R_s)$  and sunshine duration over Japan were
- 49 homogenized.
- 50 (2) Homogenized century-long  $R_s$  data over Japan were produced, and shows that  $R_s$
- 51 increased at a rate of  $\sim 1 \text{ W m}^{-2}$  per decade from 1961 to 2015.
- 52 (3) Cloud cover modulates  $R_s$  variation at monthly and interannual time scales, while
- 53 aerosols dominate the decadal variation in  $R_s$ .



## 54 **1. Introduction**

| 55 | Surface incident solar radiation $(R_s)$ plays a vital role in atmospheric circulation,   |
|----|-------------------------------------------------------------------------------------------|
| 56 | hydrologic cycling and ecological equilibrium; therefore, its decrease and increase       |
| 57 | termed as global dimming and brightening (Wild et al., 2005; Shi et al., 2008), have      |
| 58 | received widespread interest from the public and scientific community (Allen et al.,      |
| 59 | 2013; Xia, 2010; Wang et al., 2013; Tanaka et al., 2016; Ohmura, 2009; Stanhill and       |
| 60 | Cohen, 2005). $R_s$ can be measured by either a single pyranometer or the summation of    |
| 61 | diffuse and direct components. The measurement of $R_s$ , which started in 1961 in Japan, |
| 62 | has a long history (Tanaka et al., 2016), and a data record more than half a century-long |
| 63 | has been accumulated. The dataset has been widely used to study decadal variability       |
| 64 | (Wild et al., 2005; Stanhill and Cohen, 2008) and to evaluate model simulations (Allen    |
| 65 | et al., 2013; Dwyer et al., 2010).                                                        |

66 The Eppley and Robitzsch pyranometers used to measure  $R_s$  over Japan were replaced by the Moll-Gorczynski thermopile pyranometers in the early 1970s (Tanaka 67 68 et al., 2016). Instrument replacements introduced substantial inhomogeneity into the time series of observed R<sub>s</sub> over China during the period of 1990-1993 (Shi et al., 2008; 69 70 Wang et al., 2015). Instrument changes from the Robitzsch pyranograph to the Kipp & 71 Zonen CM11 pyranometer before 1980 caused no clear dimming in Italy (Manara et al., 72 2016). However, the possible homogeneity of the observed  $R_s$  over Japan has not been 73 well quantified, and most existing studies directly used raw  $R_s$  data (Wild et al., 2005;





| 74 | Tanaka et al., 2016; Tsutsumi and Murakami, 2012; Allen et al., 2013; Wild and                     |
|----|----------------------------------------------------------------------------------------------------|
| 75 | Schmucki, 2011; Kudo et al., 2012; Ohmura, 2009). Some studies have had to abandon                 |
| 76 | data from the early years and focused on only $R_s$ data collected after 1975 (Tsutsumi            |
| 77 | and Murakami, 2012; Dwyer et al., 2010). Therefore, the observed decadal variability               |
| 78 | in $R_s$ over Japan is questionable, especially for the 1961-1975 time period.                     |
| 79 | Homogenizing the observed $R_s$ has been attempted in China (Wang et al., 2015;                    |
| 80 | Tang et al., 2011; Yang et al., 2018), Italy (Manara et al., 2016), Spain (Sanchez-                |
| 81 | Lorenzo et al., 2013) and Europe (Sanchez-Lorenzo et al., 2015). It is essential to find           |
| 82 | a homogeneous reference station to compare with the possible inhomogeneous station                 |
| 83 | to test and adjust the inhomogeneity in the observed time series, as done for the                  |
| 84 | homogenization of air temperature (Du et al., 2020). However, this process is difficult            |
| 85 | for $R_s$ because the instrument replacement of $R_s$ generally occurs nearly simultaneously       |
| 86 | throughout a country. Therefore, the sunshine duration (SunDu)-derived $R_s$ (Yang et al.,         |
| 87 | 2006) has been used as a homogeneous reference dataset to detect and adjust the                    |
| 88 | inhomogeneity of $R_s$ in China (Wang et al., 2015).                                               |
| 89 | The SunDu records the hours of surface direct solar radiation exceeding $120 \text{ W m}^{-1}$     |
| 90 | $^{2}$ and provides an alternative way to estimate $R_{s}$ (Yang et al., 2006; Stanhill and Cohen, |
| 91 | 2008). It has been revealed that the Jordan recorder is 10% more sensitive than the                |
| 92 | Campbell-Stokes recorder for SunDu measurements (Noguchi, 1981). The                               |
| 93 | homogenization of SunDu has been carried out in Iberian Peninsula (Sanchez-Lorenzo                 |

et al., 2007), Switzerland (Sanchez-Lorenzo and Wild, 2012), and Italy (Manara et al.,





| 95  | 2015). In Japan, the Jordan recorders used to measure SunDu were replaced by EKO        |
|-----|-----------------------------------------------------------------------------------------|
| 96  | rotating mirror recorders in approximately 1986 (Inoue and Matsumoto, 2003; Stanhill    |
| 97  | and Cohen, 2008). Therefore, SunDu observations over Japan themselves may have          |
| 98  | inhomogeneity issues.                                                                   |
| 99  | The RHtest-quantile matching (QM) method (Wang, 2008b; Vincent et al., 2012),           |
| 100 | which first detects the changepoints in a series and then tunes the inhomogeneous data  |
| 101 | segments to be consistent with other segments in empirical distributions, has been      |
| 102 | widely used for homogenizing climate variables (Dai et al., 2011; Wang et al., 2010).   |
| 103 | The main objective of this study is to detect and adjust the inhomogeneity in $R_s$     |
| 104 | estimates over Japan. The metadata were first extracted from website information and    |
| 105 | related records at each site. The SunDu observations were converted into $R_s$ . The    |
| 106 | RHtest-QM method was applied to homogenize the observed $R_s$ and SunDu-derived $R_s$ , |
| 107 | and finally, the homogenized long-term $R_s$ data were derived over Japan. Furthermore, |
| 108 | the impacts of cloud cover and aerosols on $R_s$ variation over Japan in recent decades |
| 109 | were explored.                                                                          |

## 110 2. Data and methods

#### 111 **2.1** Surface incident solar radiation and sunshine duration

112 The monthly observed  $R_s$  at 105 stations and SunDu at 156 stations were 113 downloaded from the Japanese Meteorology Agency (JMA) website (see Table S1 and 114 Figure 1).  $R_s$  records were available from 1961. During the 1960s, two  $R_s$  measurements





| 115 | were conducted in parallel by both Eppley and Robitzsch pyranometers. In the early      |
|-----|-----------------------------------------------------------------------------------------|
| 116 | 1970s (see Figure 2 and Table S2), these instruments were replaced by Moll-Gorczynski   |
| 117 | thermopile pyranometers. This replacement occurred at approximately 12% of $R_s$        |
| 118 | stations in 1971, followed by ~24%, 26%, 4% and 32% in the next four years, which       |
| 119 | may have caused severe data discontinuity problems (Tanaka et al., 2016).               |
| 120 | SunDu has been routinely measured since 1890. Jordan recorders were replaced            |
| 121 | by EKO rotating mirror recorders at nearly 50% of SunDu stations in 1986. Before        |
| 122 | 1990, nearly all of the SunDu stations used new instruments for observations. Less than |
| 123 | 5% of SunDu stations before 1985 and more than 10% of SunDu stations after 2000         |
| 124 | were moved away from the original sites (see Figure 2 and Table S2) (Stanhill and       |
| 125 | Cohen, 2008).                                                                           |
| 126 | In this study, SunDu was used to derive $R_s$ based on the following equation (Yang     |
|     |                                                                                         |

127 et al., 2006):

128 
$$R_s / R_c = a_0 + a_1 \cdot n / N + a_2 \cdot (n / N)^2$$
(1)

where n is sunshine duration hours; N is the maximum possible sunshine duration;  $R_c$ is surface solar radiation under clear skies; and  $a_0$ ,  $a_1$  and  $a_2$  are coefficients. This method was recommended in many studies (Wang et al., 2015; Tang et al., 2011).

## 132 2.2. Homogenization method

133Both  $R_s$  and SunDu measurements over Japan suffer inhomogeneity problems,134whichrequirerigorousdatahomogenization.RHtest135(http://etccdi.pacificclimate.org/software.shtml) is a widely used method to detect and





| 136 | adjust multiple changepoints in a data series (Wang, 2008a). Two algorithms were                               |
|-----|----------------------------------------------------------------------------------------------------------------|
| 137 | provided to detect changepoints based on the penalized maximal T test and the                                  |
| 138 | penalized maximal F test (Wang, 2008b). As the discontinuity dates were recorded on                            |
| 139 | the JMA websites, we artificially treat these observations on those dates as changepoints.                     |
| 140 | To diminish all significant artificial shifts caused by the changepoints, Quantile-                            |
| 141 | Matching (QM) adjustments in the RHtest (Vincent et al., 2012) were performed to                               |
| 142 | adjust the series so that the empirical distributions of all segments of the detrended base                    |
| 143 | series agree with each other. The corrected values are all based on the empirical                              |
| 144 | frequency of the datum to be adjusted.                                                                         |
| 145 | Another independent homogenization method proposed by (Katsuyama, 1987),                                       |
| 146 | which was developed due to the replacement of the Jordan recorders with EKO rotating                           |
| 147 | mirror recorder during the late 1980s, is denoted as follows:                                                  |
| 148 | $S_R = 0.8 S_J (S_J < 2.5 h/day)$ (2)                                                                          |
| 149 | $S_R = S_J - 0.5 \ h/day \ (S_J \ge 2.5 \ h/day)$ (3)                                                          |
| 150 | where $S_J$ is the daily SunDu observed by the Jordan recorders before replacement; and                        |
| 151 | $S_{\ensuremath{\text{R}}}$ is the daily SunDu adjusted to be consistent with the values observed with the EKO |
| 152 | rotating mirror recorders. The homogenization methods were compared in this study                              |
| 153 | and yielded nearly the same SunDu-derived $R_s$ variation, as shown in Figure 3.                               |
| 154 | 2.3 Clouds                                                                                                     |
| 155 | Clouds play an important role in $R_s$ variation (Norris and Wild, 2009). Monthly                              |

156 cloud cover observations at 155 stations were also available on the JMA website. The





| 157 | observation time for cloud amount has been 08:00-19:00 since 1981 at 10% of cloud          |
|-----|--------------------------------------------------------------------------------------------|
| 158 | amount stations and 08:30-17:00 from 1990 to 1995 at another 10% of cloud amount           |
| 159 | stations (see Figure 2 and Table S2). However, the difference between annual raw and       |
| 160 | homogenized cloud data is trivial, as cloud data are relatively homogeneous in space       |
| 161 | compared with $R_s$ and SunDu observations. A site observation of cloud amount can         |
| 162 | represent the value over a large spatial scale, likely leading to few inhomogeneity issues |
| 163 | for cloud data. The Clouds and the Earth's Radiant Energy System (CERES) provides          |
| 164 | surface incident solar radiation (Ma et al., 2015) primarily based on the Moderate         |
| 165 | Resolution Imaging Spectroradiometer (MODIS) cloud and aerosol products (Kato et           |
| 166 | al., 2012).                                                                                |

167 To explore the impact of the cloud cover anomaly on the  $R_s$  variation, the cloud 168 cover radiative effect (CCRE), defined as the change in  $R_s$  produced by a change in 169 cloud cover, was proposed by (Norris and Wild, 2009):

170  $CCRE'(g, y, m) = CC'(g, y, m) \times CRE(g, m) / \overline{CC}(g, m)$ (4)

where g is the grid, y is the year, m is the month, CCRE' is the cloud cover radiative effect anomaly, CC' is the cloud cover anomaly,  $\overline{CC}$  is the long-term mean cloud cover and CRE is the cloud radiative effect calculated by the  $R_s$  difference under all sky and clear sky conditions.

The residual radiative effect was determined by removing the CCRE anomalies from the  $R_s$  anomalies. It is noted that a part of the cloud albedo radiative effect proportional to the cloud amount was contained in the CCRE, as a large cloud amount





| 178 | tends to yield enhanced cloud albedo, whereas another part of the cloud albedo radiative   |
|-----|--------------------------------------------------------------------------------------------|
| 179 | effect due to the aerosol first indirect effect (more aerosols facilitating more cloud     |
| 180 | condensation nuclei may enhance cloud albedo) may be included in the residual              |
| 181 | radiative effect, which mainly contains the aerosol radiative effect. In this study, long- |
| 182 | term observations of cloud amount and monthly cloud radiative effect (CRE) data in         |
| 183 | the CERES EBAF edition were used following Equation (4) to distinguish the cloud           |
| 184 | cover radiative effect from Rs variation.                                                  |

## 185 **3. Results**

#### 186 **3.1 Homogenization of observed** $R_s$ and sunshine duration derived $R_s$

187 In this study, monthly values were converted into annual values for calculation. 188 If there are missing values in any month in a specific year, the annual value for that 189 year is set to a missing value. Both  $R_s$  and SunDu records are available at 105 stations. 190 Figure 4 shows the comparisons between raw data and homogenized data. After QM 191 adjustments, the correlation coefficients between the annual observed  $R_s$  and annual 192 SunDu-derived  $R_s$  are significant with a 90% confidence interval at 75 stations. The 193 correlation coefficients were improved at 54 of 75 stations after homogenization, 194 including 31 stations that had improvements greater than 0.2. Among the 54 stations, 195 there were 41 stations (marked with red in Table S1) at which the correlation 196 coefficients were greater than 0.5, and the biases and the root mean square errors 197 generally decrease after homogenization.





| 198                                                                                      | Figure 5 shows the time series of surface incident solar radiation ( $R_s$ and SunDu-                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 199                                                                                      | derived R <sub>s</sub> ) at the HAMADA site (WMO-ID: 47755, Lat: 34.9, Lon: 132.07) before                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 200                                                                                      | and after homogenization, which highlights the necessity and feasibility of the RHtest-                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 201                                                                                      | QM method. The SunDu-derived $R_s$ variation over Japan during recent decades                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 202                                                                                      | inferred from these "perfect" data at 41 sites (Figure 6) was nearly identical to that                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 203                                                                                      | from all available data at 156 sites (as shown in Table 1 and Figure 7).                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 204                                                                                      | The cloud amount in CERES agrees well with the observations, and the annual                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 205                                                                                      | CRE in CERES is well correlated with the annual cloud amount in Figure 8. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 206                                                                                      | regional average cloud amount over Japan in Figure 8 (blue line) increases at a rate of                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 207                                                                                      | 0.7% per decade from 1960 to 2015, which is consistent with the results (Figure 4) in                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 208                                                                                      | (Tsutsumi and Murakami, 2012).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 209                                                                                      | 3.2 Uncertainties in <i>R<sub>s</sub></i> observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 209<br>210                                                                               | <b>3.2 Uncertainties in</b> $R_s$ observations<br>Figure 7 displays the change in $R_s$ during the last 5 decades, while Figure 8 shows                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 210                                                                                      | Figure 7 displays the change in $R_s$ during the last 5 decades, while Figure 8 shows                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 210<br>211                                                                               | Figure 7 displays the change in $R_s$ during the last 5 decades, while Figure 8 shows<br>the variation in observed clouds over Japan. The sharp decrease in $R_s$ in 1963 was                                                                                                                                                                                                                                                                                                                                                                 |
| <ul><li>210</li><li>211</li><li>212</li></ul>                                            | Figure 7 displays the change in $R_s$ during the last 5 decades, while Figure 8 shows<br>the variation in observed clouds over Japan. The sharp decrease in $R_s$ in 1963 was<br>attributed to the volcanic eruption of Agung in Indonesia in the same year (Witham,                                                                                                                                                                                                                                                                          |
| <ul><li>210</li><li>211</li><li>212</li><li>213</li></ul>                                | Figure 7 displays the change in $R_s$ during the last 5 decades, while Figure 8 shows<br>the variation in observed clouds over Japan. The sharp decrease in $R_s$ in 1963 was<br>attributed to the volcanic eruption of Agung in Indonesia in the same year (Witham,<br>2005). The sharp decreases in $R_s$ in 1991 and 1993 are due to the combined effect of                                                                                                                                                                                |
| <ul> <li>210</li> <li>211</li> <li>212</li> <li>213</li> <li>214</li> </ul>              | Figure 7 displays the change in $R_s$ during the last 5 decades, while Figure 8 shows<br>the variation in observed clouds over Japan. The sharp decrease in $R_s$ in 1963 was<br>attributed to the volcanic eruption of Agung in Indonesia in the same year (Witham,<br>2005). The sharp decreases in $R_s$ in 1991 and 1993 are due to the combined effect of<br>the volcanic eruption of Mount Pinatubo in the Philippines in 1991 (Robock, 2000) and                                                                                       |
| <ul> <li>210</li> <li>211</li> <li>212</li> <li>213</li> <li>214</li> <li>215</li> </ul> | Figure 7 displays the change in $R_s$ during the last 5 decades, while Figure 8 shows<br>the variation in observed clouds over Japan. The sharp decrease in $R_s$ in 1963 was<br>attributed to the volcanic eruption of Agung in Indonesia in the same year (Witham,<br>2005). The sharp decreases in $R_s$ in 1991 and 1993 are due to the combined effect of<br>the volcanic eruption of Mount Pinatubo in the Philippines in 1991 (Robock, 2000) and<br>the simultaneous significant increases in clouds (shown in Figure 8) (Tsutsumi and |





- 219 increase in clouds, while the lightening of  $R_s$  in 1978 and 1994 encounters abrupt
- 220 decreases in cloud covers.

| 221 | As shown in Figure 7, $R_s$ observations change little after homogenization               |
|-----|-------------------------------------------------------------------------------------------|
| 222 | (comparison between the light blue and dark blue lines). However, the SunDu-derived       |
| 223 | $R_s$ series are smoother after adjustment by the QM method, as the sharp decrease from   |
| 224 | 1983 to 1993 caused by the replacement of sunshine duration instruments (Jordan           |
| 225 | recorders were replaced with EKO rotating mirror recorders) (Stanhill and Cohen, 2008)    |
| 226 | was repaired (comparison between the light red line and dark red lines). Despite the      |
| 227 | identical increase in $R_s$ via both the homogenized direct measurements of $R_s$ and the |
| 228 | homogenized SunDu-derived $R_s$ during the 1995-2014 period, their variations in $R_s$    |
| 229 | from 1961 to 1994 are different (dark red line and dark blue line).                       |
| 230 | Large discrepancies in $R_s$ variation were found during the time period of 1961-         |
|     |                                                                                           |

1970, although homogenizations were performed on the direct measurements of  $R_s$  and 231 232 SunDu-derived  $R_s$  (dark blue line and dark red line in Figure 7). Existing study noted 233 the inaccurate instruments used at the beginning of operation of the  $R_s$  observation 234 network in approximately 1961, and the parallel use of two different types of 235 instruments during the 1960s may result in the large variability in observed  $R_s$  (Tanaka 236 et al., 2016). At this time, the clouds fluctuated gently, as shown in Figure 8, and the 237 change in volcanic aerosols from 1965 to 1966 was nearly the same as that from 1962 to 1963 (Table 2 in (Sato et al., 1993)), so the sudden decline in the direct observations 238 239 of  $R_s$  from 1965 to 1966, which was twice as large as that from 1962 to 1963, is

260





| 240 | suspicious. It is inferred that anthropogenic aerosols play a subtle role in the significant    |
|-----|-------------------------------------------------------------------------------------------------|
| 241 | reduction in $R_s$ , as this type of phenomenon is common for both polluted and pristine        |
| 242 | stations in Japan (Figure 22 in (Tanaka et al., 2016)).                                         |
| 243 | Figure 9 shows the correlation coefficients between homogenized $R_s$ (observed                 |
| 244 | and SunDu-derived) and cloud amount. In general, the observed $R_s$ (-0.45) is less             |
| 245 | correlated than the SunDu-derived $R_s$ (-0.67), particularly from 1961 to 1970, -0.21          |
| 246 | compared with -0.64. This in turn supports the reliability of homogenized SunDu-                |
| 247 | derived $R_s$ , especially during the time period of 1961-1970. The misleading $R_s$ variation  |
| 248 | was modified by the RHtest method again using homogenized SunDu-derived $R_s$ as                |
| 249 | reference data from 1961 to 1970 as shown in Figure 10.                                         |
| 250 | General decreases in stratospheric aerosol optical depth (AOD) were reported in                 |
| 251 | (Sato et al., 1993) from 1965 to 1980, and clouds fluctuated slightly, as shown in Figure       |
| 252 | 8; both of these factors contributed to a brightening of $R_s$ . This is in agreement with the  |
| 253 | SunDu-derived $R_s$ and contrasts with the direct measurements of $R_s$ .                       |
| 254 | During the 1985-1990 period, clouds varied slightly, as shown in Figure 8, and the              |
| 255 | observed atmospheric transmission under cloud-free conditions increased (Wild et al.,           |
| 256 | 2005), which suggests that the large declines in directly observed $R_s$ and SunDu-derived      |
| 257 | $R_s$ are defective and reinforce the reliability of the adjusted SunDu-derived $R_s$ (dark red |
| 258 | line in Figure 7).                                                                              |
| 259 | From the above analysis, it can be inferred that fewer uncertainties exist in                   |

homogenized SunDu-derived  $R_s$ , which was confirmed by another work that utilized a 13





261 different data adjusted method (Stanhill and Cohen, 2008).

#### 262 **3.2 Trends of** *Rs* **over Japan**

The trends of  $R_s$  during specific time periods for different types of datasets are listed in Table 1. Direct measurements of  $R_s$  and SunDu-derived  $R_s$  from 41 selected stations and all available stations reveal similar variations in  $R_s$  over Japan, which demonstrates that the sample number has a subtle impact on the estimation of global brightening and dimming over Japan.

268 Major differences were found in the time periods of 1961-1980, ranging from -11.2 (-12.0) to -8.4 (-4.8) W m<sup>-2</sup> per decade before and after  $R_s$  homogenizations for all 269 270 available stations (41 selected stations) over Japan. In addition, significant repairs occurred during the 1981-1995 period, ranging from -10.6 (-11.3) to -1.2 (-1.3) W m<sup>-2</sup> 271 272 per decade before and after SunDu-derived Rs homogenizations for all available stations 273 (41 selected stations) over Japan. Both corrections were mainly attributed to the 274 homogenization of corrupted raw data caused by the replacement of instruments for  $R_s$ and SunDu measurements. After careful checking and adjustment of the SunDu-derived 275 276  $R_s$  series, the decadal variation in  $R_s$  over Japan, which was totally different from former 277 studies (Wild et al., 2005; Norris and Wild, 2009), was remedied.

The combined effects of clouds and aerosols on  $R_s$  make the global dimming and brightening complicated. The CCRE can explain 70% of global brightening from 1961 to 2014 at monthly and interannual time scales, while the residual radiative effect dominates the decadal variation in  $R_s$ , as shown in Figure 11 and Table 1, which is in





| 282 | agreement with Wang et al. (2012). Homogenized SunDu-derived $R_s$ show an increase                                 |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 283 | of 1.6 W $m^{-2}$ per decade from 1961 to 1980; however, persistent increase in cloud                               |
| 284 | amount yields a CCRE decrease of 1.1 W $m^{-2}$ per decade. The residual radiative effect                           |
| 285 | accounts for an increase of 2.4 W $m^{\text{-}2}$ per decade for this time period. The cloud                        |
| 286 | radiative effect (-1.4 W m <sup>-2</sup> per decade) modulates $R_s$ variation of -1.2 W m <sup>-2</sup> per decade |
| 287 | for the 1981-1995 period, while the residual radiative effect (1.2 W $m^{-2}$ per decade)                           |
| 288 | dominates $R_s$ variation of 1.4 W m <sup>-2</sup> per decade from 1996 to 2014.                                    |
| 289 | Homogenized SunDu-derived $R_s$ shows a slight increase of 0.9 W m <sup>-2</sup> per decade                         |
| 290 | from 1961 to 2014 with a 90% confidence interval. However, the CCRE accounts for a                                  |
| 291 | deceased $R_s$ of 1.4 W m <sup>-2</sup> per decade, which implies that cloud cover changes are not                  |
| 292 | the primary driving forces for the $R_s$ trend over Japan. Meanwhile, the residual radiative                        |
| 293 | effect exhibits an increase of $2.2 \text{ W m}^{-2}$ per decade, which surpasses the negative CCRE.                |
| 294 | Several studies demonstrate a generally cleaner sky over Japan from the 1960s to                                    |
| 295 | the 2000s (except for the years impacted by volcanic eruptions) based on atmospheric                                |
| 296 | transparency and aerosol optical properties (Wild et al., 2005; Kudo et al., 2012), which                           |
| 297 | supports the dominant role of aerosols in $R_s$ brightening over Japan, as revealed by the                          |
| 298 | residual radiative effect here. Furthermore, the residual radiative effect in this study is                         |
| 299 | stronger than that in Norris and Wild (2009), as raw data were remedied and more                                    |
| 300 | accurate satellite data from CERES were adopted to quantify the radiative effect.                                   |
| 301 | Tsutsumi and Murakami (2012) demonstrated that cloud amount categories exert an                                     |
| 302 | important effect on $R_s$ variation. $R_s$ enhancement by the increased appearance of large                         |





| 303 | cloud amounts is superior to $R_s$ decline by the decreased appearance of small cloud                 |
|-----|-------------------------------------------------------------------------------------------------------|
| 304 | amounts during 1961-2014, which yields increased $R_s$ with increasing total cloud                    |
| 305 | amount. They also pointed out that the decrease in cloud optical thickness due to the                 |
| 306 | large emissions of SO <sub>2</sub> and black carbon from East Asia through the aerosol semi-direct    |
| 307 | effect (absorption of more energy by aerosols results in the evaporation or suppression               |
| 308 | of clouds) may have facilitated the increased $R_s$ over Japan.                                       |
| 309 | The decrease in spring dust storms in March-May during the last 5 decades from                        |
| 310 | China (Qian et al., 2002; Zhu et al., 2008), which may travel to neighbouring                         |
| 311 | countries(Uno et al., 2008; Choi et al., 2001), could also have triggered the increase in             |
| 312 | $R_s$ over Japan. The $R_s$ variation and radiative effect in different seasons are categorized       |
| 313 | in Figure 12 and Table 2, in which an increasing trend of 1.5 W $m^{-2}$ per decade in the            |
| 314 | homogenized SunDu-derived $R_s$ prevails in spring for the whole time period, dominated               |
| 315 | by a dramatic increase of 2.8 W $m^{-2}$ per decade in the residual effect and even larger            |
| 316 | increase during 1961-1980 (3.1 W $m^{\text{-}2}$ per decade) and 1996-2014 (3.4 W $m^{\text{-}2}$ per |
| 317 | decade).                                                                                              |

#### 4. Data availability 318

319 Monthly observed surface incident solar radiation, sunshine duration and cloud amount 320 data were provided by Japan Meteorological Agency 321 (https://www.data.jma.go.jp/obd/stats/data/en/smp/index.html), and monthly cloud 322 radiative effect (CRE) data were derived from Clouds and the Earth's Radiant Energy 323 System for CERES EBAF data (https://ceres.larc.nasa.gov/order data.php). The





- homogenized observed  $R_s$  and SunDu-derived  $R_s$  used in this study are available at
- 325 https://doi.org/10.11888/Meteoro.tpdc.271524 (Ma et al., 2021).

## 326 **5. Conclusions**

327 Observational data themselves have inherent problems caused by measurement 328 method, instrument replacement and site relocation. Therefore, precautions should be 329 taken when using these data for trend analysis or as validation data. In this study, the 330 RHtest-QM method was introduced to homogenize the direct measurements of  $R_s$  and 331 SunDu-derived  $R_s$  over Japan using the information in metadata as changepoints. 332 Inhomogeneities in the homogenized raw  $R_s$  was further checked by exploring the 333 relationship with the ground-based cloud amount and tuned again using homogenized 334 SunDu-derived  $R_s$  as the reference data. The global dimming and brightening over Japan were revisited based on the homogenized SunDu-derived  $R_s$ , which diminished 335 336 the effect of nonclimate signals in the raw observations.

Japan experienced a sudden decline in Rs in 1963, a global brightening of 4.8 W m<sup>-2</sup> per decade (P<0.01) from 1963 to 1977, a rapid increase in 1978, a sudden decrease in 1980, a global dimming of 5.1 W m<sup>-2</sup> per decade (P<0.10) from 1981 to 1993, a pronounced increase in 1994, and a nearly 1 W m<sup>-2</sup> per decade increase from 1995 to 2014. For the last 5 decades, a slight global brightening of 1 W m<sup>-2</sup> per decade (with a 99% confidence interval) was inferred from the homogenized SunDu-derived  $R_s$ . Global brightening since 1961 over Japan is consistent with that in (Stanhill and Cohen,





| 344 | 2008), except that the magnitude is not as large. |
|-----|---------------------------------------------------|
|     |                                                   |

| 345 | Clouds and aerosols are the two major factors that mediate the transformation of          |
|-----|-------------------------------------------------------------------------------------------|
| 346 | Rs. The brightening in Japan for 1961-1980 was the combined effect of cloud cover         |
| 347 | (negative effect) and aerosols (positive effect). The dimming for 1981-1995 was           |
| 348 | governed by reduced cloud amounts, while the increase in Rs for 1996-2014 was             |
| 349 | controlled by decreased aerosols. These results are different from those in (Norris and   |
| 350 | Wild, 2009), as homogenization was performed on the raw data and more accurate            |
| 351 | cloud radiative effect data series from CERES were utilized in our study. During the      |
| 352 | entire period of 1961-2014, cloud amounts dominated seasonal and interannual $R_s$        |
| 353 | variations, while aerosols (including aerosol-cloud interactions) drove decadal $R_s$     |
| 354 | variations over Japan, noted by other studies, in response to generally cleaner skies and |
| 355 | a reduction in spring Asian dust storms (Wang et al., 2012; Kudo et al., 2012).           |
| 356 |                                                                                           |





## 357 Author contributions

- 358 QM and KW designed the research and wrote the paper. LS collected the raw data. YH
- 359 homogenized the raw data. QW provided the technical support. YZ and HL checked the
- 360 data.
- 361

# 362 **Competing interests**

- 363 The authors declare that they have no conflict of interest.
- 364





| 365 |                       |                       |                  |               |               |        |
|-----|-----------------------|-----------------------|------------------|---------------|---------------|--------|
| 366 |                       |                       |                  |               |               |        |
| 367 |                       | Acknow                | vledgements      | 5             |               |        |
| 368 | This study is funde   | d by the National Key | R&D Program      | n of China (2 | 017YFA0603    | 601),  |
| 369 | the National Science  | e Foundation of Chin  | na (41930970),   | and Project   | Supported by  | State  |
| 370 | Key Laboratory of     | Earth Surface Proces  | sses and Resou   | rce Ecology   | (2017-KF-03)  | ). We  |
| 371 | thank many instit     | utions for sharing th | heir data: Japa  | an Meteorolo  | ogical Agency | y for  |
| 372 | observation           | data                  |                  | over          | J             | Japan  |
| 373 | (https://www.data.j   | ma.go.jp/obd/stats/da | ata/en/smp/inde  | ex.html); Clo | uds and the E | arth's |
| 374 | Radiant Ene           | rgy System            | for C            | CERES         | EBAF          | data   |
| 375 | (https://ceres.larc.n | asa.gov/order_data.p  | hp). We thank    | the Expert    | Team on Cli   | imate  |
| 376 | Change Detection      | and Indices (ETCCD)   | I) for providing | g the RHtestV | /4 homogeniz  | ation  |
| 377 | package (http://etco  | di.pacificclimate.org | /software.shtm   | l).           |               |        |
| 378 |                       |                       |                  |               |               |        |





380

#### 381 References

- 382 Allen, R. J., Norris, J. R., and Wild, M.: Evaluation of multidecadal variability in
- 383 CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects
- over Europe, China, Japan, and India, J Geophys Res-Atmos, 118, 6311-6336,
- 385 10.1002/jgrd.50426, 2013.
- 386 Choi, J. C., Lee, M., Chun, Y., Kim, J., and Oh, S.: Chemical composition and source
- 387 signature of spring aerosol in Seoul, Korea, J Geophys Res-Atmos, 106, 18067-
- 388 18074, <u>https://doi.org/10.1029/2001JD900090</u>, 2001.
- 389 Dai, A., Wang, J., Thorne, P. W., Parker, D. E., Haimberger, L., and Wang, X. L.: A
- 390 New Approach to Homogenize Daily Radiosonde Humidity Data, J Climate, 24, 965-
- 391 991, 10.1175/2010jcli3816.1, 2011.
- 392 Du, J., Wang, K., Cui, B., and Jiang, S.: Correction of Inhomogeneities in Observed
- Land Surface Temperatures over China, J Climate, 33, 8885-8902, 10.1175/jcli-d-19 0521.1, 2020.
- 395 Dwyer, J. G., Norris, J. R., and Ruckstuhl, C.: Do climate models reproduce observed
- solar dimming and brightening over China and Japan?, J Geophys Res-Atmos, 115,
   https://doi.org/10.1029/2009JD012945, 2010.
- Inoue, T. and Matsumoto, J.: Seasonal and secular variations of sunshine duration and
  natural seasons in Japan, Int J Climatol, 23, 1219-1234, 10.1002/joc.933, 2003.
- 400 Kato, S., Loeb, N. G., Rose, F. G., Doelling, D. R., Rutan, D. A., Caldwell, T. E., Yu,
- 401 L., and Weller, R. A.: Surface Irradiances Consistent with CERES-Derived Top-of-
- 402 Atmosphere Shortwave and Longwave Irradiances, J Climate, 26, 2719-2740,
- 403 10.1175/jcli-d-12-00436.1, 2012.
- 404 Katsuyama, M.: On comparison between rotating mirror sunshine recorders and
- 405 Jordan sunshine recorders, Weather Service Bulletin, 54, 169-183, 1987.
- 406 Kudo, R., Uchiyama, A., Ijima, O., Ohkawara, N., and Ohta, S.: Aerosol impact on the
- 407 brightening in Japan, J Geophys Res-Atmos, 117,
- 408 <u>https://doi.org/10.1029/2011JD017158</u>, 2012.
- 409 Ma, Q., Wang, K. C., and Wild, M.: Impact of geolocations of validation data on the
- 410 evaluation of surface incident shortwave radiation from Earth System Models, J
- 411 Geophys Res-Atmos, 120, 6825-6844, 10.1002/2014JD022572, 2015.
- 412 Ma, Q., He, Y., Wang, K., and Su, L.: Homogenized solar radiation data set over
- 413 Japan (1870-2015), National Tibetan Plateau Data Center [dataset],
- 414 10.11888/Meteoro.tpdc.271524, 2021.
- 415 Manara, V., Brunetti, M., Celozzi, A., Maugeri, M., Sanchez-Lorenzo, A., and Wild,
- 416 M.: Detection of dimming/brightening in Italy from homogenized all-sky and clear-
- 417 sky surface solar radiation records and underlying causes (1959–2013), Atmos Chem
- 418 Phys, 16, 11145-11161, 10.5194/acp-16-11145-2016, 2016.





- 419 Manara, V., Beltrano, M. C., Brunetti, M., Maugeri, M., Sanchez-Lorenzo, A.,
- 420 Simolo, C., and Sorrenti, S.: Sunshine duration variability and trends in Italy from
- 421 homogenized instrumental time series (1936–2013), J Geophys Res-Atmos, 120,
- 422 3622-3641, https://doi.org/10.1002/2014JD022560, 2015.
- 423 Noguchi, Y.: Solar radiation and sunshine duration in East Asia, Archives for
- 424 meteorology, geophysics, and bioclimatology, Series B, 29, 111-128,
- 425 10.1007/BF02278195, 1981.
- 426 Norris, J. R. and Wild, M.: Trends in aerosol radiative effects over China and Japan
- 427 inferred from observed cloud cover, solar "dimming," and solar "brightening", J
- 428 Geophys Res-Atmos, 114, <u>https://doi.org/10.1029/2008JD011378</u>, 2009.
- 429 Ohmura, A.: Observed decadal variations in surface solar radiation and their causes, J
- 430 Geophys Res-Atmos, 114, <u>https://doi.org/10.1029/2008JD011290</u>, 2009.
- 431 Qian, W., Quan, L., and Shi, S.: Variations of the Dust Storm in China and its Climatic
- 432 Control, J Climate, 15, 1216-1229, 10.1175/1520-
- 433 0442(2002)015<1216:Votdsi>2.0.Co;2, 2002.
- 434 Robock, A.: Volcanic eruptions and climate, Rev Geophys, 38, 191-219,
- 435 <u>https://doi.org/10.1029/1998RG000054</u>, 2000.
- 436 Sanchez-Lorenzo, A. and Wild, M.: Decadal variations in estimated surface solar
- 437 radiation over Switzerland since the late 19th century, Atmos Chem Phys, 12, 8635-
- 438 8644, 10.5194/acp-12-8635-2012, 2012.
- 439 Sanchez-Lorenzo, A., Calbó, J., and Wild, M.: Global and diffuse solar radiation in
- 440 Spain: Building a homogeneous dataset and assessing their trends, Global Planet
- 441 Change, 100, 343-352, <u>https://doi.org/10.1016/j.gloplacha.2012.11.010</u>, 2013.
- 442 Sanchez-Lorenzo, A., Brunetti, M., Calbó, J., and Martin-Vide, J.: Recent spatial and
- 443 temporal variability and trends of sunshine duration over the Iberian Peninsula from a
- 444 homogenized data set, J Geophys Res-Atmos, 112,
- 445 <u>https://doi.org/10.1029/2007JD008677</u>, 2007.
- 446 Sanchez-Lorenzo, A., Wild, M., Brunetti, M., Guijarro, J. A., Hakuba, M. Z., Calbó,
- 447 J., Mystakidis, S., and Bartok, B.: Reassessment and update of long-term trends in
- 448 downward surface shortwave radiation over Europe (1939–2012), J Geophys Res-

449 Atmos, 120, 9555-9569, https://doi.org/10.1002/2015JD023321, 2015.

- 450 Sato, M., Hansen, J. E., McCormick, M. P., and Pollack, J. B.: Stratospheric aerosol
- 451 optical depths, 1850–1990, J Geophys Res-Atmos, 98, 22987-22994,
- 452 <u>https://doi.org/10.1029/93JD02553</u>, 1993.
- 453 Shi, G. Y., Hayasaka, T., Ohmura, A., Chen, Z. H., Wang, B., Zhao, J. Q., Che, H. Z.,
- 454 and Xu, L.: Data quality assessment and the long-term trend of ground solar radiation
- 455 in China, J Appl Meteorol Clim, 47, 1006-1016, 10.1175/2007JAMC1493.1, 2008.
- 456 Stanhill, G. and Cohen, S.: Solar Radiation Changes in the United States during the
- 457 Twentieth Century: Evidence from Sunshine Duration Measurements, J Climate, 18,
- 458 1503-1512, 10.1175/jcli3354.1, 2005.
- 459 Stanhill, G. and Cohen, S.: Solar Radiation Changes in Japan during the 20th Century:





- 460 Evidence from Sunshine Duration Measurements, J Meteorol Soc Jpn. Ser. II, 86, 57-
- 461 67, 10.2151/jmsj.86.57, 2008.
- 462 Tanaka, K., Ohmura, A., Folini, D., Wild, M., and Ohkawara, N.: Is global dimming
- 463 and brightening in Japan limited to urban areas?, Atmos Chem Phys, 16, 13969-
- 464 14001, 10.5194/acp-16-13969-2016, 2016.
- 465 Tang, W. J., Yang, K., Qin, J., Cheng, C. C. K., and He, J.: Solar radiation trend across
- 466 China in recent decades: a revisit with quality-controlled data, Atmos Chem Phys, 11,
- 467 393-406, 10.5194/acp-11-393-2011, 2011.
- 468 Tsutsumi, Y. and Murakami, S.: Increase in Global Solar Radiation with Total Cloud
- 469 Amount from 33 Years Observations in Japan, J Meteorol Soc Jpn, 90, 575-581,
- 470 10.2151/jmsj.2012-409, 2012.
- 471 Uno, I., Yumimoto, K., Shimizu, A., Hara, Y., Sugimoto, N., Wang, Z., Liu, Z., and
- 472 Winker, D. M.: 3D structure of Asian dust transport revealed by CALIPSO lidar and a
- 473 4DVAR dust model, Geophys Res Lett, 35, <u>https://doi.org/10.1029/2007GL032329</u>,
  474 2008.
- 475 Vincent, L. A., Wang, X. L., Milewska, E. J., Wan, H., Yang, F., and Swail, V.: A
- 476 second generation of homogenized Canadian monthly surface air temperature for
- 477 climate trend analysis, J Geophys Res-Atmos, 117,
- 478 <u>https://doi.org/10.1029/2012JD017859</u>, 2012.
- 479 Wang, K. C., Dickinson, R. E., Wild, M., and Liang, S.: Atmospheric impacts on
- 480 climatic variability of surface incident solar radiation, Atmos Chem Phys, 12, 9581-
- 481 9592, 10.5194/acp-12-9581-2012, 2012.
- 482 Wang, K. C., Ma, Q., Li, Z. J., and Wang, J. K.: Decadal variability of surface incident
- 483 solar radiation over China: Observations, satellite retrievals, and reanalyses, J
- 484 Geophys Res-Atmos, 120, 6500-6514, 10.1002/2015JD023420, 2015.
- 485 Wang, K. C., Dickinson, R. E., Ma, Q., Augustine, J. A., and Wild, M.: Measurement
- 486 Methods Affect the Observed Global Dimming and Brightening, J Climate, 26, 4112-
- 487 4120, 10.1175/Jcli-D-12-00482.1, 2013.
- 488 Wang, X. L.: Accounting for Autocorrelation in Detecting Mean Shifts in Climate
- 489 Data Series Using the Penalized Maximal t or F Test, J Appl Meteorol Clim, 47, 2423-
- 490 2444, 10.1175/2008jamc1741.1, 2008a.
- 491 Wang, X. L. L.: Penalized maximal F test for detecting undocumented mean shift
- 492 without trend change, J Atmos Ocean Technol, 25, 368-384,
- 493 10.1175/2007JTECHA982.1, 2008b.
- 494 Wang, X. L. L., Chen, H. F., Wu, Y. H., Feng, Y., and Pu, Q. A.: New Techniques for
- 495 the Detection and Adjustment of Shifts in Daily Precipitation Data Series, J Appl
- 496 Meteorol Clim, 49, 2416-2436, 10.1175/2010JAMC2376.1, 2010.
- 497 Wild, M. and Schmucki, E.: Assessment of global dimming and brightening in IPCC-
- 498 AR4/CMIP3 models and ERA40, Clim Dynam, 37, 1671-1688, 10.1007/s00382-010499 0939-3, 2011.
- 500 Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G., Forgan, B.,





- 501 Kallis, A., Russak, V., and Tsvetkov, A.: From Dimming to Brightening: Decadal
- 502 Changes in Solar Radiation at Earth's Surface, Science, 308, 847-850,
- 503 10.1126/science.1103215, 2005.
- 504 Witham, C. S.: Volcanic disasters and incidents: A new database, J Volcanol Geoth
- 505 Res, 148, 191-233, 10.1016/j.jvolgeores.2005.04.017, 2005.
- 506 Xia, X.: A closer looking at dimming and brightening in China during 1961-2005,
- 507 Ann Geophys, 28, 1121-1132, 10.5194/angeo-28-1121-2010, 2010.
- 508 Yang, K., Koike, T., and Ye, B. S.: Improving estimation of hourly, daily, and monthly
- solar radiation by importing global data sets, Agr Forest Meteorol, 137, 43-55,
- 510 10.1016/j.agrformet.2006.02.001, 2006.
- 511 Yang, S., Wang, X. L., and Wild, M.: Homogenization and Trend Analysis of the
- 512 1958–2016 In Situ Surface Solar Radiation Records in China, J Clim, 31, 4529-4541,
- 513 10.1175/jcli-d-17-0891.1, 2018.
- 514 Zhu, C., Wang, B., and Qian, W.: Why do dust storms decrease in northern China
- 515 concurrently with the recent global warming?, Geophys Res Lett, 35,
- 516 <u>https://doi.org/10.1029/2008GL034886</u>, 2008.
- 517





- 519 Table 1. Trends of Surface Incident Solar Radiation ( $R_s$ ) in Japan during Specific Time
- 520 Periods for Different Types of Datasets<sup>a</sup>. Unit: W m<sup>-2</sup> per decade
- 521

| Case <sup>b</sup> | Datasets <sup>c</sup> | 1961-1980 | 1981-1995 | 1996-2014 | 1961-2014 |
|-------------------|-----------------------|-----------|-----------|-----------|-----------|
|                   | OBS                   | -12.0**   | -2.1      | 2.4       | -0.3      |
| Selected          | OBS_HM                | -4.8*     | -2.1      | 2.4       | 1.5**     |
| 41                | OBS_2HM               | -0.8*     | -2.1      | 2.4*      | 0.9**     |
| Stations          | SunDu-derived         | 1.4       | -11.3**   | 1.4       | -2.1**    |
|                   | SunDu-derived_HM      | 1.4       | -1.3*     | 1.5       | 0.9**     |
|                   | OBS                   | -11.2**   | -1.3      | 2.2       | 0.2       |
| A 11              | OBS_HM                | -8.4**    | -1.3      | 2.2       | 0.8       |
| All<br>Stations   | OBS_2HM               | 0.7       | -1.3      | 2.2       | 1.6**     |
| Stations          | SunDu-derived         | 2.3*      | -10.6**   | 1.2       | -1.9**    |
|                   | SunDu-derived_HM      | 1.6       | -1.2      | 1.4       | 0.9*      |
| Radiative         | CCRE series           | -1.1      | -1.4      | -0.0      | -1.4**    |
| Effect            | Residual series       | 2.4**     | -0.1      | 1.2*      | 2.2**     |

522

523

524

525 <sup>a</sup>The trend calculations were based on the linear regression method. Values with two asterisks (\*\*) imply p < 0.01, and those with one asterisk (\*) imply 0.01 .526 527 <sup>b</sup>Rs trends were calculated by different numbers of observations, including all stations 528 that are available on the JMA website and 41 stations (marked with red in Table S1, 529 detailed in Section 3.1) that are significantly improved after homogenization. This 530 implies that the sample number has a subtle impact on the trend calculation over Japan. Radiative effects from clouds and aerosols were also explored. 531 532 <sup>c</sup>Trend calculations were based on the raw measurements of surface incident solar radiation (OBS), their homogenized series (OBS HM), derived incident solar radiation 533 534 from sunshine duration hours (SunDu-derived) and their homogenized series (SunDu-535 derived HM). OBS HM from 1961 to 1970 was further homogenized by using SunDu-536 derived\_HM as reference data, termed OBS\_2HM. It is found that homogenized





- SunDu-derived Rs have the lowest uncertainties among these five datasets in Section
  3.1. The cloud cover radiative effect (CCRE) was denoted as the change in Rs produced
  by a change in cloud cover, and the CCRE calculations were performed following
  Equation (4) by observed cloud amounts and the cloud radiative effect (CRE) from
  CERES satellite retrieval. Residual effect series were obtained by removing the CCRE
- 542 from homogenized SunDu-derived Rs anomalies.
- 543





544

545 Table 2. Trends of Surface Incident Solar Radiation  $(R_s)$  in Japan during Specific Time

| Season | Datasets         | 1961-1980 | 1981-1995 | 1996-2014 | 1961-2014 |
|--------|------------------|-----------|-----------|-----------|-----------|
|        | SunDu-derived_HM | 3.1       | -1.5      | 3.4*      | 1.5       |
| Spring | CCRE series      | -0.7      | -1.6      | -1.6      | -0.9      |
|        | Residual series  | 4.9**     | -0.5**    | 2.2**     | 2.8*      |
|        | SunDu-derived_HM | 1.4       | -3.4      | 0.6       | 0.4       |
| Summer | CCRE series      | -1.9      | -2.1      | -4.4**    | -2.7      |
|        | Residual series  | 2.0**     | -1.8      | 1.5**     | 2.8       |
|        | SunDu-derived_HM | 0.6       | 1.5       | 3.3**     | 1.0*      |
| Autumn | CCRE series      | -1.3**    | 1.6       | 1.6       | -0.9      |
|        | Residual series  | 1.8**     | 0.8**     | 2.1**     | 2.0*      |
|        | SunDu-derived_HM | 0.6       | -1.5      | -1.6      | 0.5       |
| Winter | CCRE series      | -0.6      | -3.3      | -0.6      | -0.7      |
|        | Residual series  | 1.1**     | 0.9**     | -0.9**    | 1.2**     |

546 Periods for Different Types of Datasets for All Seasons. Unit: W m<sup>-2</sup> per decade





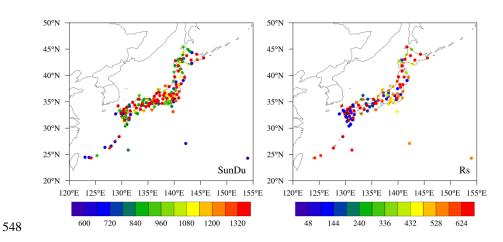
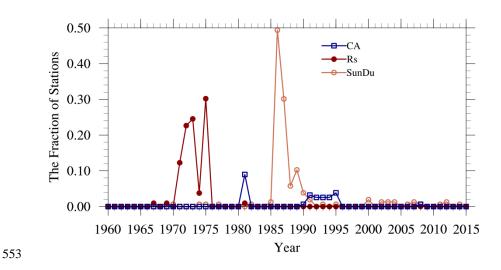
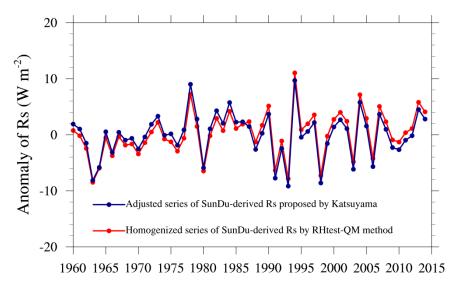
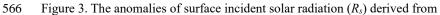




Figure 1. The spatial distribution of stations over Japan with observed sunshine duration (SunDu, 156 stations) and surface incident solar radiation ( $R_s$ , 105 stations) data. The colours indicate the data length of the SunDu records from 1890 to 2015 and  $R_s$  records from 1961 to 2015. Unit: month.





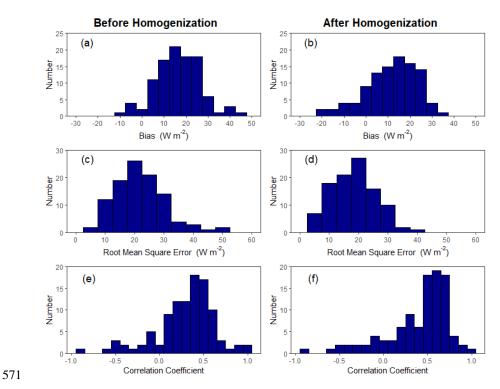




554 Figure 2. The fraction of stations that suffer from data inhomogeneity due to site 555 relocation, change of instruments and measurement method for sunshine duration 556 (SunDu) records, cloud amount (CA) records and surface incident solar radiation  $(R_s)$ 557 records. In total, there were 156 stations with SunDu records, 105 of which had  $R_s$ 558 records and 155 of which had CA records. The inhomogeneity information shown here 559 derived from metadata from was 560 https://www.data.jma.go.jp/obd/stats/data/en/smp/index.html, and was used as primary 561 information to perform the inhomogeneity adjustment in the RHtest method detailed in 562 Section 2.2. 563










- 567 homogenized sunshine duration (SunDu) data (red line) by the RHtest-QM method
- and other independent data (blue line) adjusted by the method in (Katsuyama, 1987).
- 569 Both of the homogenized datasets yield nearly the same  $R_s$  variation.

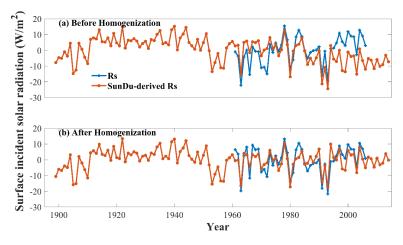


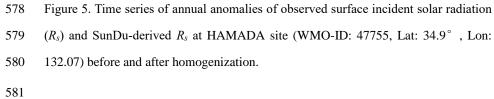


570



572 Figure 4. Histograms of bias, root mean square error and correlation coefficient

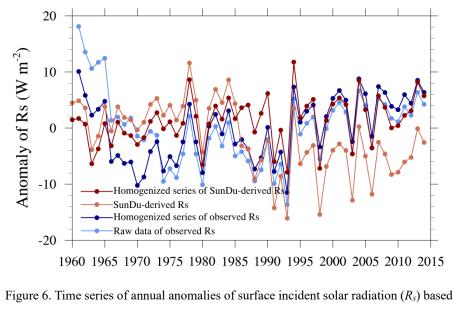

573 between SunDu-derived surface incident solar radiation  $(R_s)$  and observed  $R_s$  before

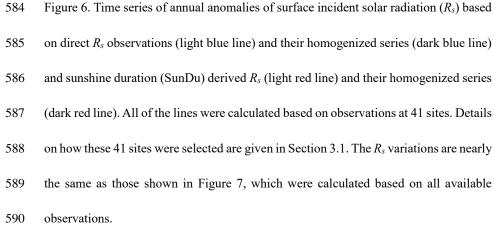

574 (a, c, e) and after (b, d, f) homogenization. Their differences decrease after

- 575 homogenization.
- 576





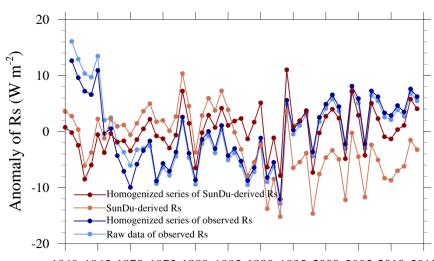



582







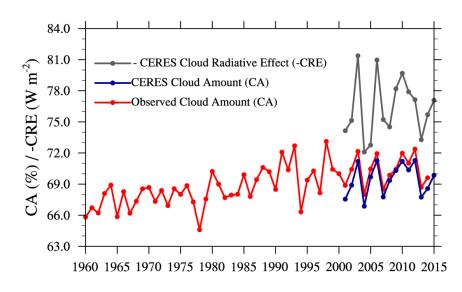



591










1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Figure 7. Time series of annual anomalies of the surface incident solar radiation  $(R_s)$ 593 594 based on direct observations (light blue line) and their homogenized series (dark blue 595 line) and sunshine duration (SunDu) derived  $R_s$  (light red line) and their homogenized 596 series (dark red line). All of the lines were calculated based on as many observations as possible. The light blue line and dark blue line were calculated from the  $R_s$  observations 597 598 at 105 sites, while the light red line and dark red line were derived from the SunDu-599 derived Rs at 156 sites. The  $R_s$  variations are nearly the same as those shown in Figure 600 6, which were calculated based on the 41 selected sites in Section 3.1. Large 601 discrepancies were found in the homogenized data series (dark blue and dark red lines). 602 603







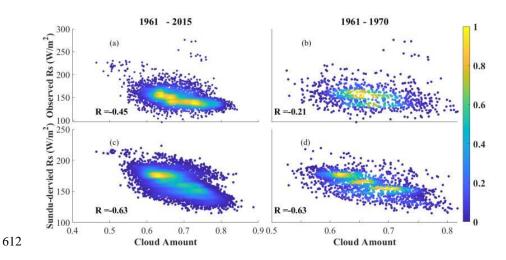

604

Figure 8. The cloud amount (CA) from CERES (blue line) agrees well with that derived
from surface observations (red line) over Japan. At the annual time scale, the negative
cloud radiative effect (-CRE, grey line) in CERES correlated well with the cloud
amount.

- 609
- 610
- 611



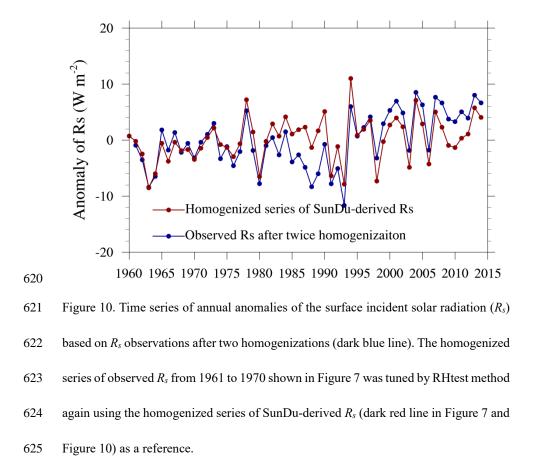




613 Figure 9. Scatter plot of homogenized monthly surface incident solar radiation  $(R_s)$ 

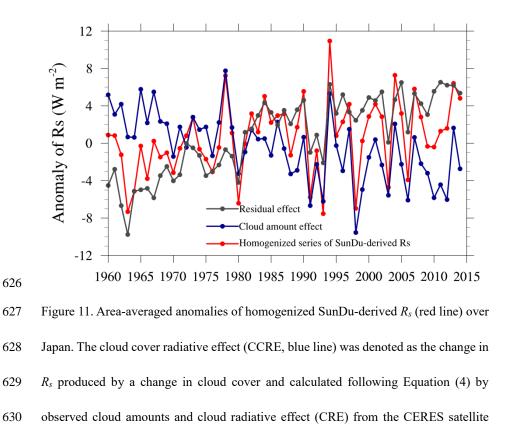
614 (observed and SunDu-derived solar radiation) as a function of ground-based

observations of cloud amount over Japan at all stations only when both cloud amount


data and observed  $R_s$  data are available. (a) and (c) for 1961-2015, (b) and (d) for

617 1961-1970. The smallest correlation coefficient in (b) indicates that the observed  $R_s$ 

- data are spurious for 1961-1970, and SunDu-derived  $R_s$  are more convincing.
- 619














631 retrieval. The residual effect (grey line) was obtained by removing the cloud cover

for radiative effect (CCRE) from the homogenized SunDu-derived  $R_s$  anomalies.





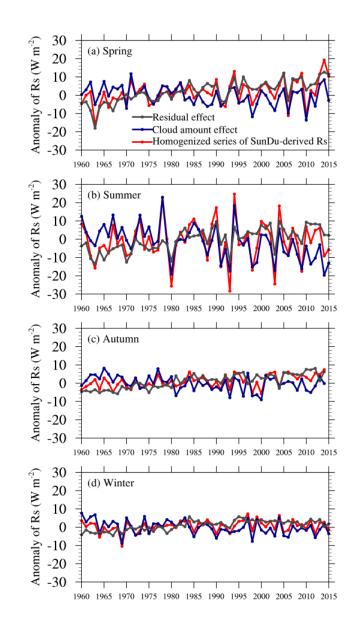



Figure 12. Same as Figure 10 but for the four seasons. The decrease in Asian spring dust may have triggered the brightening over Japan for 1961-2015, as the  $R_s$  in spring increases most among the seasons.